Abstract

We explore the relationships among phenotypic plasticity, parental effects, and parental care in plants by presenting data from four experiments examining reflectance/color patterns in Plantago lanceolata. In three experiments, we measured spike (inflorescence) reflectance between 362 and 850 nm using a spectrophotometer with an integrating sphere. Experiments show that (1) spike reflectance changes seasonally within and outside the visible portion of the spectrum of radiant energy, (2) increasing ambient temperature causes an individual plant to produce flowering and fruiting spikes that reflect more/lighten in color (the greatest changes occur in the regions around 550 nm and between 750 and 850 nm, the visible and near-infrared regions, respectively), (3) responses are reversible, (4) genotypes within populations and populations from different latitudes differ in mean reflectance and degree of phenotypic plasticity. In a fourth experiment, we measured internal spike temperature. Darker spikes, those produced at lower temperature, got hotter than did lighter spikes in full sun. Thus, plants can partially thermoregulate reproduction and the embryonic development of their offspring. In light of a previous experiment, data suggest that thermoregulation produces adaptive parental effects and is a mechanism by which P. lanceolata provides parental care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.