Abstract

Life history responses of four Daphnia magna clones at two food levels were studied to assess the importance of maturation instar on the plasticity of fitness responses under simulated mortality regimes. Females of the clones studied could vary offspring size with consequent effects on their maturation time. Significant genetic variability in life history and fitness responses, measured as the intrinsic rate of population increase, within and across food levels was observed, but most of this variation could be attributed to maturation instar differences among clones within and across environments. In the laboratory, without extrinsic mortality, females maturing earlier always had higher fitness than those maturing later, indicating a clear fitness cost of delaying maturity. Nevertheless using a model, we showed that the observed maturation instar effects on life history responses can lead to differences in fitness under different size-selective predation regimes, such that females with delayed maturity have higher fitness under invertebrate predation while females maturing earlier have higher fitness under fish predation regimes. These results suggest that intraclonal variation in offspring size and hence in the number of maturation instars can be an adaptation to living in habitats subject to temporal fluctuations in fish and invertebrate predation pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call