Abstract

Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms' performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light dependent with a sessile and modular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call