Abstract
Adoptive cell immunotherapy with chimeric antigen receptor (CAR) showed limited potency in solid tumors, despite durable remissions for hematopoietic malignancies. Therefore, an investigation of ways to enhance the efficacy of CARs' antitumor response has been engaged upon. We previously examined the interplay between the biophysical parameters of CAR binding (i.e., affinity, avidity, and antigen density), as regulators of CAR T-cell activity and detected nonmonotonic behaviors of affinity and antigen density and an interrelation between avidity and antigen density. Here, we built an evolving phenotypic model of CAR T-cell regulation, which suggested that receptor downmodulation is a key determinant of CAR T-cell function. We verified this assumption by measuring and manipulating receptor downmodulation and intracellular signaling processes. CAR downmodulation inhibition, via actin polymerization inhibition, but not inhibition of regulatory inhibitory phosphatases, was able to increase CAR T-cell responses. In addition, we documented trogocytosis in CAR T cells that depends on actin polymerization. In summary, our study modeled the parameters that govern CAR T-cell engagement and revealed an underappreciated mechanism of T-cell regulation. These results have a potential to predict and therefore advance the rational design of CAR T cells for adoptive cell treatments.See related article on p. 872.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.