Abstract

Our understanding of infection biology is based on experiments in which pathogen or host proteins are perturbed by small compound inhibitors, mutation, or depletion. This approach has been remarkably successful, as, for example, demonstrated by the independent identification of the endosomal membrane protein Niemann-Pick C1 as an essential factor for Ebola virus infection in both small compound and insertional mutagenesis screens (Côté, Nature 477:344-348, 2011; Carette et al., Nature 477:340-343, 2011). However, many aspects of host-pathogen interactions are poorly understood because we cannot target all of the involved molecules with small molecules, or because we cannot deplete essential proteins. Single domain antibody fragments expressed in the cytosol or other organelles constitute a versatile alternative to perturb the function of any given protein by masking protein-protein interaction interfaces, by stabilizing distinct conformations, or by directly interfering with enzymatic activities. The variable domains of heavy chain-only antibodies (VHHs) from camelid species can be cloned from blood samples of animals immunized with the desired target molecules. We can thus exploit the ability of the camelid immune system to generate affinity-matured single domain antibody fragments to obtain highly specific tools. Interesting VHH candidates are typically identified based on their affinity toward immobilized antigens using techniques such as phage display.The phenotypical screening approach described here allows the direct identification of VHHs that prevent infection of cells with influenza A virus (IAV) or other pathogens. The VHH repertoire is cloned into a lentiviral vector, which is used to generate pseudo-typed lentivirus particles. Target cells are transduced with the lentivirus, so that every cell inducibly expresses a different VHH. This cell collection is then challenged with a lethal dose of virus. Only the cells which express a VHH that prevents infection by targeting virus proteins or host cell components essential for infection will survive. We can thus identify critical target molecules including vulnerable epitopes and conformations, render target molecules accessible to informative perturbation studies, and stabilize intermediates of virus entry for detailed analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.