Abstract

Atherosclerosis is a complex disease characterized by arterial lesions consisting of macrophage foam cells, smooth muscle cells, lymphocytes and other cell types. As atherosclerotic lesions mature, they can rupture and thereby trigger thrombosis that can result in tissue infarction. Macrophage foam cells develop in the subendothelial space when cells take up cholesterol from modified forms of low-density lipoprotein (LDL) and other apolipoprotein B-containing lipoproteins. Current therapies to limit atherosclerosis focus on altering the plasma lipid composition, most commonly by reducing circulating LDL levels. No current therapy is specifically designed to alter the cellular composition of atherosclerotic lesions. To address this deficit, phenotypic high-throughput drug screens have been developed to identify compounds that reduce the uptake of oxidized LDL by macrophages or to identify compounds that increase the efflux of cholesterol from macrophages. Additional phenotypic screens can be envisaged that address cellular processes in active atherosclerotic lesions including macrophage apoptosis and efferocytosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.