Abstract

Accumulating evidence has shown that astrocytes do not just support the function of neurons, but play key roles in maintaining the brain environment in health and disease. Contrary to the traditional understanding of astrocytes as static cells, reactive astrocytes possess more diverse functions and phenotypes than previously predicted. In the present focused review, we summarize the evidence showing that astrocytes are playing profound roles in the disease process of amyotrophic lateral sclerosis. Aberrantly activated astrocytes in amyotrophic lateral sclerosis rodents express microglial molecular markers and provoke toxicities to accelerate disease progression. In addition, TIR domain–containing adapter protein–inducing interferon‐β‐dependent innate immune pathway in astrocytes also has a novel function in terminating glial activation and neuroinflammation. Furthermore, heterogeneity in phenotypes and functions of astrocytes are also observed in various disease conditions, such as other neurodegenerative diseases, ischemia, aging and acute lesions in the central nervous system. Through accumulating knowledge of the phenotypic and functional diversity of astrocytes, these cells will become more attractive therapeutic targets for neurological diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.