Abstract

Bacillus sensu lato were screened for their capacity to mineralize organic phosphorus (P) and promote plant growth, improving nitrogen (N) and P nutrition of soybean. Isolates were identified through Type Strain Genome Server (TYGS) and Average Nucleotide Identity (ANI). ILBB95, ILBB510 and ILBB592 were identified as Priestia megaterium, ILBB139 as Bacillus wiedmannii, ILBB44 as a member of a sister clade of B. pumilus, ILBB15 as Peribacillus butanolivorans and ILBB64 as Lysinibacillus sp. These strains were evaluated for their capacity to mineralize sodium phytate as organic P and solubilize inorganic P in liquid medium. These assays ranked ILBB15 and ILBB64 with the highest orthophosphate production from phytate. Rhizocompetence and plant growth promotion traits were evaluated in vitro and in silico. Finally, plant bioassays were conducted to assess the effect of the co-inoculation with rhizobial inoculants on nodulation, N and P nutrition. These bioassays showed that B. pumilus, ILBB44 and P. megaterium ILBB95 increased P-uptake in plants on the poor substrate of sand:vermiculite and also on a more fertile mix. Priestia megaterium ILBB592 increased nodulation and N content in plants on the sand:vermiculite:peat mixture. Peribacillus butanolivorans ILBB15 reduced plant growth and nutrition on both substrates. Genomes of ILBB95 and ILBB592 were characterized by genes related with plant growth and biofertilization, whereas ILBB15 was differentiated by genes related to bioremediation. Priestia megaterium ILBB592 is considered as nodule-enhancing rhizobacteria and together with ILBB95, can be envisaged as prospective PGPR with the capacity to exert positive effects on N and P nutrition of soybean plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call