Abstract

Transitions to obligate asexuality have been documented in almost all metazoan taxa, yet the conditions favoring such transitions remained largely unexplored. We address this problem in the rotifer Brachionus calyciflorus. In this species, a polymorphism at a single locus, op, can result in transitions to obligate parthenogenesis. Homozygotes for the op allele reproduce strictly by asexual reproduction, whereas heterozygous clones (+/op) and wild-type clones (+/+) are cyclical parthenogens that undergo sexual reproduction at high population densities. Here, we examine dosage effects of the op allele by analyzing various life-history characteristics and population traits in 10 clones for each of the 3 possible genotypes (op/op, +/op, and +/+). For most traits, we found that op/op clones differed significantly (P < 0.05) from the 2 cyclical parthenogenetic genotypes (+/+ and +/op). By contrast, the 2 cyclical parthenogenetic genotypes were almost indistinguishable, except that heterozygote individuals were slightly but significantly smaller in body size compared with wild-type individuals. Overall, this indicates that the op allele is selectively neutral in the heterozygous state. Thus, selective sweeps of this allele in natural populations would first require conditions favoring the generation of homozygotes. This may be given by inbreeding in very small populations or by double mutants in very large populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call