Abstract

AbstractPhenotypic evolution can cause either divergent or convergent phenotypic patterns. Even adaptation to the same environment may result in divergence of some elements of phenotype, whereas for other morphological traits it could cause phenotypic convergence. We hypothesize that at least some phenotypic characters diverge monotonically, hence they evolve irreversibly even in very closely related species, and this happens in spite of multiple convergent adaptive patterns. We studied the evolution of phenotype in 13 closely related Caucasian rock lizards (Darevskia), whose phylogenetic relationships are well known. We used head shape and the outlines of three important scales, using geometric morphometrics. We studied the association of the overall head shape, individual principal components of head shape and scale outlines with four predictors: phylogeny, habitat, sex and size. The overall head shape was not correlated with any of these predictors, whereas some principal components were correlated with habitat or phylogeny. Habitat type explained the highest fraction of variation in head shape and anal scale area. The relatedness inferred from the components of phenotype not correlated with habitat was congruent with the phylogenetic tree inferred from molecular data. Although adaptation to local environments may obscure the phylogenetic signal present in phenotype, there are components of phenotype whose evolution is irreversible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call