Abstract

Viruses that do not cause life-long immunity persist by evolving rapidly in response to prevailing host immunity. The immune-escape mutants emerge frequently, displacing or co-circulating with native strains even though mutations conferring immune evasion are often detrimental to viral replication. The epidemiological dynamics of immune-escape in acute-infection viruses with high transmissibility have been interpreted mainly through immunity dynamics at the host population level, despite the fact that immune-escape evolution involves dynamical processes that feedback across the within- and between-host scales. To address this gap, we use a nested model of within- and between-host infection dynamics to examine how the interaction of viral replication rate and cross-immunity imprint host population immunity, which in turn determines viral immune escape. Our explicit consideration of direct and immune-mediated competitive interactions between strains within-hosts revealed three insights pertaining to risk and control of viral immune-escape: (1) replication rate and immune-stimulation deficiencies (i.e., original antigenic sin) act synergistically to increase immune escape, (2) immune-escape mutants with replication deficiencies relative to their wildtype progenitor are most successful under moderate cross-immunity and frequent re-infections, and (3) the immunity profile along short host-transmission chains (local host-network structure) is a key determinant of immune escape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.