Abstract

The developing chicken blastoderm can be temporarily maintained in dormancy below physiological zero temperature. However, prolonged preincubation egg storage impairs normal morphological and physiological development of embryos in a potential example of fetal programming (in this case, “embryonic programming”). We investigated how preincubation egg storage conditions (temperature, duration, hypoxia, and hypercapnia) affects viability, body mass, and physiological variables and functions in day 15 chicken embryos. Embryo viability was impaired in eggs stored for 2 and 3 weeks, with the effects greater at 22°C compared to 15°C. However, embryo size was reduced in eggs stored at 15°C compared with 22°C. Phenotypic change resulting from embryonic programming was evident in the fact that preincubation storage at 15°C diminished hematocrit (Hct), red blood cell concentration ([RBC]), and hemoglobin concentration ([Hb]). Storage duration at 15°C more severely affected the time course (2, 6, and 24 h) responses of Hct, [RBC], and [Hb] to progressive hypoxia and hypercapnia induced by submersion compared with storage duration at 22°C. The time‐specific regulation of acid–base balance was changed progressively with storage duration at both 22 and 15°C preincubation storages. Consequently, preincubation egg storage at 22°C resulted in poor viability compared with eggs stored at 15°C, but size and physiological functions of embryos in eggs stored for 1–2 weeks were worse in eggs stored in the cooler than stored under room conditions. Avian eggs thus prove to be useful for examining developmental consequences to physiology of altered preincubation thermal environment in very early stages of development (embryonic programming).

Highlights

  • Fetal programming occurs when experiences during human fetal development cause phenotypic changes later in life

  • All chicken embryo experiments were conducted at the University of North Texas in accordance with the protocol approved by the UNT Institutional Animal Care and Use Committee

  • 120 eggs comprising half of a single replicate according to storage temperature (~22 or 15°C) were weighed with an electronic balance to 0.01 g and randomly divided into four groups according to storage duration; nonstorage control group, 1, 2, and 3 weeks storage groups

Read more

Summary

Introduction

Fetal programming occurs when experiences during human fetal development cause phenotypic changes later in life. This phenomenon in humans has rightfully received much attention due to the potential effects of fetal experiences on health in late adulthood (see Alexander et al 2015; Barker 2002; Barker et al 2002; Moritz et al 2003; Roberts et al 2015; Sedaghat et al 2015; Stangenberg et al 2015; for an entry into the voluminous literature). Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.