Abstract

Nutrient-evoked gastrointestinal reflexes are likely initiated by specialized epithelial cells located in the small intestine that detect luminal stimuli and release mediators that activate vagal endings. The G-protein alpha-gustducin, a key signal molecule in lingual taste detection, has been identified in mouse small intestine, where it may also subserve nutrient detection; however, the phenotype of alpha-gustducin cells is unknown. Immunohistochemistry was performed throughout the mouse small intestine for alpha-gustducin, enteroendocrine cell markers 5-HT and glucagon-like peptide-1 (GLP-1), and brush cell markers neuronal nitric oxide synthase and Ulex europaeus agglutinin-1 (UEA-1) lectin binding, singly, and in combination. alpha-Gustducin was expressed in solitary epithelial cells of the mid to upper villus, which were distributed in a regional manner with most occurring within the midjejunum. Here, 27% of alpha-gustducin cells colabeled for 5-HT and 15% for GLP-1; 57% of alpha-gustducin cells colabeled UEA-1, with no triple labeling. alpha-Gustducin cells that colabeled for 5-HT or GLP-1 were of distinct morphology and exhibited a different alpha-gustducin immunolabeling pattern to those colabeled with UEA-1. Neuronal nitric oxide synthase was absent from intestinal epithelium despite strong labeling in the myenteric plexus. We conclude that subsets of enteroendocrine cells in the midjejunum and brush cells (more generally distributed) are equipped to utilize alpha-gustducin signaling in mice. Intestinal taste modalities may be signaled by these enteroendocrine cells via the release of 5-HT, GLP-1, or coexpressed mediators or by brush cells via a nonnitrergic mediator in distinct regions of the intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call