Abstract

BackgroundThe SYNGAP1 gene encodes for a small GTPase-regulating protein critical to dendritic spine maturation and synaptic plasticity. Mutations have recently been identified to cause a breadth of neurodevelopmental disorders including autism, intellectual disability, and epilepsy. The purpose of this work is to define the phenotypic spectrum of SYNGAP1 gene mutations and identify potential biomarkers of clinical severity and developmental progression.MethodsA retrospective clinical data analysis of individuals with SYNGAP1 mutations was conducted. Data included genetic diagnosis, clinical history and examinations, neurophysiologic data, neuroimaging, and serial neurodevelopmental/behavioral assessments. All patients were seen longitudinally within a 6-year period; data analysis was completed on June 30, 2018. Records for all individuals diagnosed with deleterious SYNGAP1 variants (by clinical sequencing or exome sequencing panels) were reviewed.ResultsFifteen individuals (53% male) with seventeen unique SYNGAP1 mutations are reported. Mean age at genetic diagnosis was 65.9 months (28–174 months). All individuals had epilepsy, with atypical absence seizures being the most common semiology (60%). EEG abnormalities included intermittent rhythmic delta activity (60%), slow or absent posterior dominant rhythm (87%), and epileptiform activity (93%), with generalized discharges being more common than focal. Neuroimaging revealed nonspecific abnormalities (53%). Neurodevelopmental evaluation revealed impairment in all individuals, with gross motor function being the least affected. Autism spectrum disorder was diagnosed in 73% and aggression in 60% of cases. Analysis of biomarkers revealed a trend toward a moderate positive correlation between visual-perceptual/fine motor/adaptive skills and language development, with posterior dominant rhythm on electroencephalogram (EEG), independent of age. No other neurophysiology-development associations or correlations were identified.ConclusionsA broad spectrum of neurologic and neurodevelopmental features are found with pathogenic variants of SYNGAP1. An abnormal posterior dominant rhythm on EEG correlated with abnormal developmental progression, providing a possible prognostic biomarker.

Highlights

  • The SYNGAP1 gene encodes for a small GTPase-regulating protein critical to dendritic spine maturation and synaptic plasticity

  • A broad spectrum of neurologic and neurodevelopmental features are found with pathogenic variants of SYNGAP1

  • In a separate example, deleting Mecp2 in GABAergic neurons in mice revealed phenotypic similarities to whole-body deletion in mice modeling Rett syndrome suggesting a central role for inhibitory neuronal dysfunction [2]

Read more

Summary

Objectives

The purpose of this work is to define the phenotypic spectrum of SYNGAP1 gene mutations and identify potential biomarkers of clinical severity and developmental progression

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.