Abstract

Lymphangioleiomyomatosis (LAM), occurring sporadically (S-LAM) or in patients with tuberous sclerosis complex (TSC), results from abnormal proliferation of LAM cells exhibiting mutations or loss of heterozygosity (LOH) of the TSC genes, TSC1 or TSC2. To identify molecular markers useful for isolating LAM cells from body fluids and determine the frequency of TSC1 or TSC2 LOH. Candidate cell surface markers were identified using gene microarray analysis of human TSC2⁻(/)⁻ cells. Cells from bronchoalveolar lavage fluid (BALF), urine, chylous effusions, and blood were sorted based on reactivity with antibodies against these proteins (e.g., CD9, CD44v6) and analyzed for LOH using TSC1- and TSC2-related microsatellite markers and single nucleotide polymorphisms in the TSC2 gene. CD44v6(+)CD9(+) cells from BALF, urine, and chyle showed TSC2 LOH in 80%, 69%, and 50% of patient samples, respectively. LAM cells with TSC2 LOH were detected in more than 90% of blood samples. LAM cells from different body fluids of the same patients showed, in most cases, identical LOH patterns, that is, loss of alleles at the same microsatellite loci. In a few patients with S-LAM, LAM cells from different body fluids differed in LOH patterns. No patients with S-LAM with TSC1 LOH were identified, suggesting that TSC2 abnormalities are responsible for the vast majority of S-LAM cases and that TSC1-disease may be subclinical. Our data support a common genetic origin of LAM cells in most patients with S-LAM, consistent with a metastatic model. In some cases, however, there was evidence for genetic heterogeneity between LAM cells in different sites or within a site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call