Abstract

BackgroundFamilial hypercholesterolemia (FH) is an inherited disorder mainly caused by mutations in the LDL receptor (LDL-R) and characterized by elevation of low-density lipoprotein cholesterol (LDL-C) levels and premature cardiovascular disease. ObjectiveIn this study, we evaluated the clinical phenotype of the p.Asp47Asn, described as an uncertain pathogenic variant, and its effect on the structure of LDL-R and ligand interactions with apolipoproteins. Methods27 children and adolescents with suspected FH diagnosis were recruited from a pediatric endocrinology outpatient clinic. Blood samples were collected after 12 h fasting for lipid profile analysis. DNA sequencing was performed for six FH-related genes by Ion Torrent PGM platform and copy number variation by MLPA. For index cases, a familial cascade screening was done restricted to the same mutation found in the index case. In silico analysis were developed to evaluate the binding capacity of LDL-R to apolipoproteins B100 and E. ResultsLipid profile in children and adolescents demonstrated higher LDL-C levels in p.Asp47Asn carriers compared to the wild type genotype. In silico analysis predicted a reduction in the binding capacity of the ligand-binding modules LA1-2 of p.Asp47Asn LDL-R for ApoB100 and ApoE, which was not produced by local structural changes or folding defects but as a consequence of a decreased apparent affinity for both apolipoproteins. ConclusionThe clinical phenotype and the structural effects of p.Asp47Asn LDL-R mutation suggest that this variant associates to FH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call