Abstract

Macrophages are phenotypically diverse cells performing a number of functions involved in immunity, inflammation, wound healing, tissue homeostasis and the foreign body reaction. In the latter, the type of biomaterial and the surrounding environment likely have an impact on macrophage phenotype and, subsequently, the severity of the reaction. The objectives for this study were to characterize the phenotype of bone marrow-derived murine macrophages in response to poly(ethylene glycol) (PEG)-based hydrogels, a promising class of materials for cell delivery. Gene expression was used as a measure of phenotype and characterized by IL-1β, TNF-α, iNOS, IL-12β, arginase, VEGF-A, and IL-10. Macrophages were cultured on PEG hydrogels, PEG hydrogels with RGD tethers, and medical grade silicone rubber, a well-characterized biomaterial, up to 96 h in the absence and presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Macrophage interrogation led to immediate up-regulation (10×) of IL-1β and TNF-α within 4 h, followed by an increase in IL-10/ IL-12β and a subsequent concomitant decrease in the pro-inflammatory genes by 96 h, suggesting a shift from classically activated to a regulatory phenotype. LPS stimulation led to a stronger early up-regulation of pro-inflammatory genes (e.g. 20–30× for IL-1β and TNF-α), followed by upregulation (4–6×) of arginase, suggesting a shift from an elevated classically activated to a wound healing phenotype. Material type played a significant role in regulating pro-inflammatory genes, which was most pronounced with PEG alone. Overall, our findings indicate that macrophages undergo similar phenotypic changes for the materials tested, but the magnitudes of these responses are highly material dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.