Abstract

Sorption of organic pollutants on microplastics can be an alternative uptake route for organic pollutants in aquatic organisms. To assess the combined effects of microplastics and organic pollutants, we employed phenotypic and transcriptomic analyses to the responses of the marine rotifer Brachionus koreanus to environmentally relevant concentrations of nano-sized microplastic (0.05 µm), water-accommodated fractions of crude oil, and binary mixtures thereof. Our multigenerational in vivo experiments revealed more than additive effects on population growth of B. koreanus in response to combined exposure, while a single exposure to nano-sized microplastic did not induce observable adverse effects. Synergistic transcriptome deregulation was consistently associated with dramatically higher numbers of differentially expressed genes, and increased gene expression was associated with combined exposure. The majority of synergistic transcriptional alteration was related to metabolism and transcription, with impaired reproduction resulting from energetic reallocation toward adaptation. As further supported by chemistry analysis for polycyclic aromatic hydrocarbons sorption on microplastic, our findings imply that nano-sized microplastics can synergistically mediate the effects of organic pollutants in aquatic organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.