Abstract

Plants encounter and respond to numerous abiotic stresses during their lifetimes. These stresses are often related and could therefore elicit related responses. There are, however, relatively few detailed comparisons between multiple different stresses at the molecular level. Here, we investigated the phenotypic and transcriptomic response of cultivated sunflower (Helianthus annuus L.) seedlings to three water-related stresses (i.e., dry-down, an osmotic challenge, and salt stress), as well as a generalized low-nutrient stress. All four stresses negatively impacted seedling growth, with the nutrient stress having a more divergent response from control as compared to the water-related stresses. Phenotypic responses were consistent with expectations for growth in low-resource environments, including increased (i.e., less negative) carbon fractionation values and leaf C:N ratios, as well as increased belowground biomass allocation. The number of differentially expressed genes (DEGs) under stress was greater in leaf tissue, but roots exhibited a higher proportion of DEGs unique to individual stresses. Overall, the three water-related stresses had a more similar transcriptomic response to each other vs. nutrient stress, though this pattern was more pronounced in root vs. leaf tissue. In contrast to our DEG analyses, co-expression network analysis revealed that there was little indication of a shared response between the four stresses in despite the majority of DEGs being shared between multiple stresses. Importantly, osmotic stress, which is often used to simulate drought stress in experimental settings, had little transcriptomic resemblance to true water limitation (i.e., dry-down) in our study, calling into question its utility as a means for simulating drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call