Abstract

In the present study, heterogeneity in natural chickpea rhizobia populations associated with 18 different chickpea (Cicer arientinum) cultivars of India was investigated. Physiological diversity of 20 chickpea rhizobia was characterized based on phenotypic parameters such as Bromothymol blue (BTB) test, pH, temperature and salinity tolerance. Based on response to BTB test and pH tolerance, all chickpea rhizobia were further divided into slow growers/alkali producers (14 isolates) and fast growers/acid producers (6 isolates). The temperature (upto 40°C) and salinity (NaCl) tolerance (upto 6%) tests provided a wide description of physiological diversity among the rhizobial isolates. The intrinsic antibiotic resistance of each isolate against 14 different antibiotics distinguished all chickpea rhizobia into five clades at the level of 80% similarity coefficient. Further, based on UPGMA phylogeny of carbon utilization profile, all isolates were dispersed into six clusters at the level of 85% similarity coefficient, which indicated a remarkable variability among the rhizobia. The evaluation of nodule-forming efficiency of all isolates revealed that the isolate ACR15 was more competent for nodule formation than all other isolates. The representative strain from each carbon metabolic cluster was further subjected for molecular identification through 16S rRNA gene characterization. Neighbour-joining method-based phylogeny of 16S rRNA gene sequence revealed a high degree of species diversity among the isolates. Further, the prominent nodule-forming isolate such as ACR15 was identified as Mesorhizobium ciceri, while other isolates showed similarity with other species of Mesorhizobium genus. The present study contributed to the knowledge that besides M. ciceri and M. mediterraneum, chickpea can also be nodulated by many other native chickpea rhizobia which indicates the impact of exploration of promising native populations. These findings may support the further investigation of symbiotic as well as stress responsive genes of chickpea rhizobia leading to develop more effective inoculant strains for wide agricultural applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call