Abstract

Rust caused by Uromyces appendiculatus (Pers., Pers.) Unger is one of the major foliar diseases of common bean (Phaseolus vulgaris) in Uganda. The use of host resistance remains the best option in managing this disease. The objective of this study was to identify sources of broad-spectrum rust resistance in common bean germplasm including landraces, commercial cultivars and introduced genotypes using a combination of phenotypic and genotypic screening with 22 simple sequence repeat (SSR) markers located on chromosome Pv04. A total of 138 genotypes were field screened from 2014 and 2015 using an alpha lattice design. The variance and correlation of disease incidence, area under the disease progression curve (AUDPC) and total grain yield were computed using GenStat. The polymorphism information content of the genotypes was determined, and the association of the markers and the disease resistance traits were analyzed using PowerMarker and TASSEL respectively. Resistance of each genotype was compared to the presence and absence of amplified markers. There were highly significant differences (P < 0.001) among the genotypes for disease incidence, AUDPC and total grain yield and a strong correlation (P < 0.001) between disease incidence and AUDPC in both years. The SSR markers, BARC_PV_SSR04725, bean_ssr_0778 and bean_ssr_2892 were associated (P ≤ 0.05) with rust resistance. Fifteen 15 genotypes which included the landraces Nabufumbo, and Kapchorwa white, and the commercial cultivar NABE 2 were identified as new sources of rust resistance that would be useful in future bean breeding programmes in Uganda.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call