Abstract
The transcription factor, MafB, plays important role in the differentiation and functional maintenance of various cells and tissues, such as the inner ear, kidney podocyte, parathyroid gland, pancreatic islet, and macrophages. The rare heterozygous substitution (p.Leu239Pro) of the DNA binding domain in MAFB is the cause of Focal Segmental Glomerulosclerosis associated with Duane Retraction Syndrome, which is characterized by impaired horizontal eye movement due to cranial nerve maldevelopment in humans. In this research, we generated mice carrying MafB p.Leu239Pro (Mafbmt/mt) and retrieved their tissues for analysis. As a result, we found that the phenotype of Mafbmt/mt mouse was similar to that of the conventional Mafb deficient mouse. This finding suggests that the Leucine residue at 239 in the DNA binding domain plays a key role in MafB function and could contribute to the diagnosis or development of treatment for patients carrying the MafB p.Leu239Pro missense variant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.