Abstract

Good vision requires a healthy cornea, and a healthy cornea needs healthy stem cells. Limbal epithelial stem cells (LESCs) are a traditional source of corneal epithelial cells and are recruited for the continuous production of epithelium without seizing throughout an animal's life, which maintains corneal transparency. Like the maintenance of other adult somatic stem cells, the maintenance of LESCs depends on the specific microenvironmental niche in which they reside. The purpose of this study was to determine the microenvironmental damage associated with LESCs fate due to ultraviolet (UV)-B exposure in a mouse model. Structural alteration and deregulation of the stem cell and its neighboring niche components were observed by using clinical, morphological, explant culture study, and flowcytometric analysis, which demonstrated that the limbal microenvironment plays an important role in cornea-related disease development. In UV-exposed mice, overexpression of vascular endothelial growth factor receptor 2 indicated neovascularization, decreased CD38 expression signified the alteration of limbal epithelial superficial cells, and the loss of limbal stem cell marker p63 indicated limbal stem cell deficiency in the limbal vicinity. We concluded that LESC deficiency diseases (LESCDDs) are associated with pathophysiological changes in the LESC niche, with some inhibitory interception such as UV-B irradiation, which results in corneal defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.