Abstract

Examination of Bacillus subtilis strains containing multiple mutations affecting the class A high-molecular-weight penicillin-binding proteins (PBPs) 1, 2c, and 4 revealed a significant degree of redundancy in the functions of these three proteins. In rich media, loss of PBPs 2c and 4 resulted in no obvious phenotype. The slight growth and cell morphology defects associated with loss of PBP 1 were exacerbated by the additional loss of PBP 4 but not PBP 2c. Loss of all three of these PBPs slowed growth even further. In minimal medium, loss of PBPs 2c and 4 resulted in a slight growth defect. The decrease in growth rate caused by loss of PBP 1 was accentuated slightly by loss of PBP 2c and greatly by loss of PBP 4. Again, a lack of all three of these PBPs resulted in the slowest growth. Loss of PBP 1 resulted in a 22% reduction in the cell radius. Cultures of a strain lacking PBP 1 also contained some cells that were significantly longer than those produced by the wild type, and some of the rod-shaped cells appeared slightly bent. The additional loss of PBP 4 increased the number of longer cells in the culture. Slow growth caused by a mutation in prfA, a gene found in an operon with the gene encoding PBP 1, was unaffected by the additional loss of PBPs 2c and 4, whereas loss of both prfA and PBP 1 resulted in extremely slow growth and the production of highly bent cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.