Abstract

Brain-derived neurotrophic factor (BDNF) influences neuronal survival, differentiation, and maturation. More recently, its role in synapse formation and plasticity has also emerged. In the cerebellum of the spontaneous recessive mutant mouse stargazer (stg) there is a specific and pronounced deficit in BDNF mRNA expression. BDNF protein levels in the cerebellum as a whole are reduced by 70%, while in the granule cells (GCs) there is a selective and near total reduction in BDNF mRNA expression. Recently, we published data demonstrating that inhibitory neurons in the cerebella of stgs have significantly reduced levels (approximately 50%) of gamma-aminobutyric acid (GABA) and fewer, smaller inhibitory synapses compared to wildtype (WT) controls. Our current investigations indicate that the stargazer mutation has an even more pronounced effect on the phenotype of glutamatergic neurons in the cerebellum. There is a profound decrease in the levels of glutamate-immunoreactivity (up to 77%) in stg compared to WT controls. The distribution profile of presynaptic vesicles is also markedly different: stgs have proportionally fewer docked vesicles and fewer vesicles located adjacent to the active zone ready to dock than WTs. Furthermore, the thickness of the postsynaptic density (PSD) at mossy fiber-granule cell (MF-GC) and parallel fiber-Purkinje cell (PF-PC) synapses is severely reduced (up to 33% less than WT controls). The number and length of excitatory synapses, however, appear to be relatively unchanged. It is possible that at least some of theses changes in phenotype are directly attributable to the lack of BDNF in the cerebellum of the stg mutant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.