Abstract

In the present study, the phenotype of melanoma cells resistant to dabrafenib (a B-RAF inhibitor) was investigated, to shed more light on melanoma resistance to B-RAF inhibition. Melanoma cells resistant to dabrafenib were generated using 3 different cell lines, A375, 397 and 624.38, all carrying B-RAFV600E, and they were characterized by cytofluorometric analysis, Ion Torrent technology, immunofluorescence and biochemistry. All dabrafenib-resistant cells showed, in addition to a re-activation of MAPK signaling, morphological changes compared to their sensitive counterparts, accompanied by an increase in CD90 (mesenchymal marker) expression and a decrease in E-cadherin (epithelial marker) expression, suggesting an epithelial-to-mesenchymal-like phenotypic transition. However, melanoma cells with TGF-β1-induced epithelial-to-mesenchymal transition (EMT) were more sensitive to dabrafenib treatment compared to the sensitivity noted in the non-TGF-β1-induced EMT melanoma cells, suggesting that TGF-β1-induced EMT was not associated with dabrafenib resistance. Although dabrafenib-resistant cells exhibited increased cell motility and E-cadherin/vimentin reorganization, as expected in EMT, all of them showed unvaried E-cadherin mRNA and unchanged Snail protein levels, while Twist1 protein expression was decreased with the exception of A375 dabrafenib-resistant melanoma cells, where it was unaffected. These findings suggest a distinct active EMT-like process adopted by melanoma cells under drug exposure. Furthermore, dabrafenib-resistant cells exhibited stem cell-like features, with Oct4 translocation from the cytoplasm to peri-nuclear sites and nuclei, and increased CD20 expression. In conclusion, our data, in addition to confirming that resistance to dabrafenib is dependent on re-activation of MAPK signaling, suggest that this resistance is linked to a distinct active EMT-like process as well as stem-cell features adopted by melanoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.