Abstract
A phenothiazine-rhodamine (PTRH) fluorescent dyad was synthesized and its ability to selectively sense Zn2+ ions in solution and in in vitro cell lines was tested using various techniques. When compared with other competing metal ions, the PTRH probe showed the high selectivity for Zn2+ ions that was supported by electronic and emission spectral analyses. The emission band at 528nm for the PTRH probe indicated the ring closed form of PTRH, as for Zn2+ ion binding to PTRH, the λem get shift to 608nm was accompanied by a pale yellow to pink colour (under visible light) and green to pinkish red fluorescence emission (under UV light) due to ring opening of the spirolactam moiety in the PTRH ligand. Spectral overlap of the donor emission band and the absorption band of the ring opened form of the acceptor moiety contributed towards the fluorescence resonance energy transfer ON mechanism for Zn2+ ion detection. The PTRH sensor had the lowest detection limit for Zn2+ , found to be 2.89×10-8 M. The sensor also demonstrated good sensing application with minimum toxicity for in vitro analyses using HeLa cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.