Abstract
Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example, schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our UK-representative sample of adolescents. For example, education GPS explained variation in adolescents' behavior problems (~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities earlier in development.
Highlights
One of the most striking findings emerging from genome-wide association studies (GWAS) of complex traits is the scarcity of common single nucleotide polymorphism (SNP) associations that account for more than 1% of trait variation in the population.[1,2]
We describe two types of main results: (i) associations between genome-wide polygenic scores (GPS) and the behavioral phenome for the entire sample, which demonstrate the usefulness of cross-trait prediction, and (ii) quantile analyses showing the association between selected GPS and behavior by septile, which illustrates the ability to stratify individuals by GPS and the potential of polygenic score for phenotype prediction
The quantitative genetic model assumes that many genetic variants of small effect drive the heritability of complex traits and common disorders,[30] even though each marker is inherited in the discrete manner hypothesized by Mendel.[31]
Summary
SNP associations in well-powered GWAS demonstrates that the ubiquitous heritability of complex dimensions and common disorders is caused by thousands of common DNA variants of small effect.[1,4] Because their effects are miniscule, a single common SNP is of little use for prediction For this reason, the future of genetic prediction lies with polygenic scores that aggregate the effects of thousands of SNPs discovered by GWAS, including variants that do not achieve genome-wide significance.[5] Unlike quantitative genetic designs that estimate the net effect of DNA differences in a population—such as twin and adoption studies and SNP-based heritability6—polygenic scores provide individual-specific estimates of genetic propensities for specific SNPs. Here we refer to polygenic scores as genome-wide polygenic scores (GPS) for two reasons. The acronym GPS in its original use as global positioning system is an apt metaphor for the use of DNA differences across the genome to guide research on genetic influence
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.