Abstract

This report provides an overview of the Phenomena Identification and Ranking Table (PIRT) analysis of thermal energy storage (TES) systems for possible integration with various types of advanced nuclear power plants (NPPs). Advanced NPPs will potentially need to operate in environments where power generation flexibility is more highly valued than the stability or baseload generation capability for conventional demand curves. TES systems would enable NPPs to respond nimbly to market variability and could also position advanced NPPs to participate differently in restructured markets, thus further enhancing their economic competitiveness. TES systems could also benefit the electric grid by eliminating the need for peaking plants, as well as by improving the economic performance of baseload NPPs. While TES technologies afford a unique opportunity to address many of these challenges, the applicability of these systems is also complicated by the fact that various advanced NPPs are designed differently, each with its own temperature range, size, operating fluids, and operating conditions. Hence, TES systems face significant barriers to investment, as more information on their compatibility and performance metrics is needed to quantify the advantages provided by each, as well as the challenges these technologies might face if coupled with a particular type of advanced NPP. This report explores the possibility of integrating a wide variety of TES technologies with various categories of advanced NPPs, based on their operating characteristics. To help users and developers decide which TES technology is best suited to a particular category of advanced NPPs, this research developed a PIRT of 10 TES systems that could potentially be coupled with advanced NPPs, which themselves are divided into nine categories based on their operating conditions. Each advanced NPP category is evaluated for compatibility with the 10 TES systems by assembling and discussing a database of information concerning 10 engineering questions (defined herein in as figures of merit [FOMs]), such as: technology readiness level (TRL), temperature compatibility, energy density, size, cycle frequency, ramp time, realignment frequency, geographic needs, environmental impact, and interventions. By assembling a database of information concerning the TES technologies’ compatibility with various advanced NPP systems, this study can help developers acquaint themselves with a particular TES technology before choosing to build a new integrated installation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.