Abstract

We examine new aspects of leptoquark (LQ) phenomenology using effective field theory (EFT). We construct a complete set of leading effective operators involving SU(2) singlets scalar LQ and the SM fields up to dimension six. We show that, while the renormalizable LQ-lepton-quark interaction Lagrangian can address the persistent hints for physics beyond the Standard Model in the B-decays $\bar B \to D^{(*)} \tau \bar\nu$, $\bar B \to \bar K \ell^+ \ell^-$ and in the measured anomalous magnetic moment of the muon, the LQ higher dimensional effective operators may lead to new interesting effects associated with lepton number violation. These include the generation of one-loop sub-eV Majorana neutrino masses, mediation of neutrinoless double-$\beta$ decay and novel LQ collider signals. For the latter, we focus on 3rd generation LQ ($\phi_3$) in a framework with an approximate $Z_3$ generation symmetry, and show that one class of the dimension five LQ operators may give rise to a striking asymmetric same-charge $\phi_3 \phi_3$ pair-production signal, which leads to low background same-sign leptons signals at the LHC. For example, with $M_{\phi_3} \sim 1$ TeV and a new physics scale of $\Lambda \sim 5$ TeV, we expect about $5000$ positively charged $\tau^+ \tau^+$ events via $pp \to \phi_3 \phi_3 \to \tau^+ \tau^+ + 2 \cdot j_b$ ($j_b$=b-jet) at the 13 TeV LHC with an integrated luminosity of 300 fb$^{-1}$. It is interesting to note that, in the LQ EFT framework, the expected same-sign lepton signals have a rate which is several times larger than the QCD LQ-mediated opposite-sign leptons signals, $gg,q \bar q \to \phi_3 \phi_3^* \to \ell^+ \ell^- +X$. We also consider the same-sign charged lepton signals in the LQ EFT framework at higher energy hadron colliders such as a 27 TeV HE-LHC and a 100 TeV FCC-hh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.