Abstract

We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other ($x$=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter $\epsilon\equiv1-2\sin^2\theta_{ex}$ and quantify the present experimental status for $|\epsilon|<0.3$. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for $10^{-8}$ eV$^2\lsim\Delta m^2\lsim2\times10^{-7}$ eV$^2$. In the mass ranges $\Delta m^2\gsim 1.5\times10^{-5}$ eV$^2$ and $4\times10^{-10}$ eV$^2\lsim\Delta m^2\lsim2\times10^{-7}$ eV$^2$ the full interval $|\epsilon|<0.3$ is allowed within 4$\sigma$(99.995 % CL). We suggest ways to measure $\epsilon$ in future experiments. The observable that is most sensitive to $\epsilon$ is the rate [NC]/[CC] in combination with the Day-Night asymmetry in the SNO detector. With theoretical and statistical uncertainties, the expected accuracy after 5 years is $\Delta \epsilon\sim 0.07$. We also discuss the effects of maximal and near-maximal $\nu_e$-mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.