Abstract

Reaction intermediates buried within a solid-liquid interface are difficult targets for physiochemical measurements. They are inherently molecular and locally dynamic, while their surroundings are extended by a periodic lattice on one side and the solvent dielectric on the other. Challenges compound on a metal-oxide surface of varied sites and especially so at its aqueous interface of many prominent reactions. Recently, phenomenological theory coupled with optical spectroscopy has become a more prominent tool for isolating the intermediates and their molecular dynamics. The following article reviews three examples of the SrTiO3-aqueous interface subject to the oxygen evolution from water: reaction-dependent component analyses of time-resolved intermediates, a Fano resonance of a mode at the metal-oxide-water interface, and reaction isotherms of metastable intermediates. The phenomenology uses parameters to encase what is unknown at a microscopic level to then circumscribe the clear and macroscopically tuned trends seen in the spectroscopic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.