Abstract

The cosmological constant is not an absolute constant. The gravitating part of the vacuum energy is adjusted to the energy density of matter and to other types of the perturbations of the vacuum. We discuss how the vacuum energy responds (i) to the curvature of space in the Einstein closed Universe; (ii) to the expansion rate in the de Sitter Universe; and (iii) to the rotation in the Godel Universe. In all these steady state Universes, the gravitating vacuum energy is zero in the absence of the perturbation, and is proportional to the energy density of perturbation. This is in a full agreement with the thermodynamic Gibbs-Duhem relation applicable to any quantum vacuum. It demonstrates that (i) the cosmological constant is not huge, since according to the Gibbs-Duhem relation the contribution of zero point fluctuations to the vacuum energy is cancelled by the trans-Planckian degrees of freedom; (ii) the cosmological constant is nonzero, since the perturbations of the vacuum state induce the non-zero vacuum energy; and (iii) the gravitating vacuum energy is on the order of the energy density of matter and/or of other perturbations. We also consider the vacuum response to the non-steady-state perturbations. In this case the Einstein equations are modified to include the non-covariant corrections, which are responsible for the relaxation of the cosmological constant. The connection to the quintessence is demonstrated. The problem of the energy-momentum tensor for the gravitational field is discussed in terms of effective gravity. The difference between the momentum and pseudomomentum of gravitational waves in general relativity is similar to that for sound waves in hydrodynamics.KeywordsCosmological ConstantGravitational FieldEinstein EquationGravitational WaveVacuum EnergyThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call