Abstract
We propose a scenario where Dark Matter (DM) annihilates into an intermediate state which travels a distance λ ≡ v/Γ on the order of galactic scales and then decays to Standard Model (SM) particles. The long lifetime disperses the production zone of the SM particles away from the galactic center and hence, relaxes constraints from gamma ray observations on canonical annihilation scenarios. We utilize this set up to explain the electron and positron excesses observed recently by PAMELA, ATIC and FERMI. While an explanation in terms of usual DM annihilations seems to conflict with gamma ray observations, we show that within the proposed scenario, the PAMELA/ATIC/FERMI results are consistent with the gamma ray data. The distinction from decay scenarios is discsussed and we comment on the prospects for DM production at LHC. The typical decay length λ ≳ 10 kpc of the intermediate state can have its origin from a dimension six operator suppressed by a scale Λ ∼ 1013 GeV, which is roughly the seesaw scale for neutrino masses.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.