Abstract

We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally enhanced transition temperatures. The resulting 3K-phase must have a different pairing symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in the bulk. It is invariant under time reversal and a second transition, in general, above the onset of bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to frustration phenomena for the superconducting states on different Ru-inclusions. Furthermore, the phase structure of the pair wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle tunneling spectra. Additional characteristic properties are associated with the upper critical field Hc2. The 3K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal which yields a stronger orbital depairing effect for the inplane magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature dependence for the z-axis critical field is found due to the coupling of the magnetic field to the order parameter texture at the interface. Various other experiments are discussed and new measurements are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.