Abstract

A thermodynamic model is developed for the melting of an ultrathin lubricant film squeezed between two atomically smooth solid surfaces. To describe the state of lubricant, an excess volume parameter is introduced; it appears due to the chaos in the structure of a solid body induced by melting. This parameter increases with the total internal energy upon melting. Thermodynamic melting and shear melting are described. The dependences of the friction force on the lubricant temperature and the shear rate of friction surfaces are analyzed. The calculated results are compared to the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call