Abstract

ABSTRACTBased on the phase equilibrium model of the paraffin wax precipitation in the process of oil pipeline transportation, theory and method of non-equilibrium thermodynamics were applied to obtain the linear phenomenological equations for the cross-interaction of heat and mass transfer during pipeline transport, which were derived from the irreversible entropy production rate equation. Then, the analysis of the irreversible heat flow and the mass flow were carried out, and the mathematical expressions of the phenomenological coefficient of liquid phase, the phenomenological coefficient of solid phase flow, and the heat flow phenomenological coefficient were obtained. Taking a waxy crude oil transportation pipeline in Daqing Oilfield as an example, based on the analysis of liquid–solid phase equilibrium, the irreversible linear phenomenological mechanism of heat and mass coupling in waxy crude oil pipeline transportation was analyzed in detail from three levels: phenomenological coefficients which reflect characteristic of the effect of force on flow in heat and mass transfer; thermodynamic forces which trigger heat and mass transfer; transmitted heat and mass flow density, providing a theoretical basis for the further study of the wax deposition in the process of pipeline transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call