Abstract

Unconventional superconductivity with spin-triplet Cooper pairing is reviewed on the basis of the quasi-phenomenological Ginzburg-Landau theory. The superconductivity, in particular, the mixed phase of coexistence of ferromagnetism and unconventional superconductivity is triggered by the spontaneous magnetization. The mixed phase is stable whereas the other superconducting phases that usually exist in unconventional superconductors are either unstable, or, for particular values of the parameters of the theory, some of these phases are metastable at relatively low temperatures in a quite narrow domain of the phase diagram. The phase transitions from the normal phase to the phase of coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase can be either of first or second order depending on the concrete substance. The Cooper pair and crystal anisotropy are relevant to a more precise outline of the phase diagram shape and reduce the degeneration of the ground states of the system but they do not drastically influence the phase stability domains and the thermodynamic properties of the respective phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.