Abstract

In this work, we perform a phenomenological derivation of the first- and second-order relativistic hydrodynamics of dissipative fluids. To set the stage, we start with a review of the ideal relativistic hydrodynamics from energy–momentum and particle number conservation equations. We then go on to discuss the matching conditions to local thermodynamical equilibrium, symmetries of the energy–momentum tensor, decomposition of dissipative processes according to their Lorentz structure, and, finally, the definition of the fluid velocity in the Landau and Eckart frames. With this preparatory work, we first formulate the first-order (Navier–Stokes) relativistic hydrodynamics from the entropy flow equation, keeping only the first-order gradients of thermodynamical forces. A generalized form of diffusion terms is found with a matrix of diffusion coefficients describing the relative diffusion between various flavors. The procedure of finding the dissipative terms is then extended to the second order to obtain the most general form of dissipative function for multiflavor systems up to the second order in dissipative fluxes. The dissipative function now includes in addition to the usual second-order transport coefficients of Israel–Stewart theory also second-order diffusion between different flavors. The relaxation-type equations of second-order hydrodynamics are found from the requirement of positivity of the dissipation function, which features the finite relaxation times of various dissipative processes that guarantee the causality and stability of the fluid dynamics. These equations contain a complete set of nonlinear terms in the thermodynamic gradients and dissipative fluxes arising from the entropy current, which are not present in the conventional Israel–Stewart theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call