Abstract
ABSTRACTThere has been increasing interest in the development and use of micro-electromechanical systems (MEMS) for various applications. Some MEM devices such as gyroscopes, accelerometers and bolometers, must be sealed under vacuum, at pressures below 10 millitorr, for efficient operation. A gas absorbing material (getter) is placed in the packages of these devices, to help maintain vacuum levels over service lives of many years. Heating under vacuum, just prior to sealing the package, activates getter, of this type. This study was undertaken to develop a model that could be used to estimate the quantity of getter needed as well as optimize the activation process subject to process constraints on time and temperature.The material studied was a titanium and zirconium-based alloy (7:3 by weight) non-evaporable getter in the form of strips produced by SAES Getters. The zirconium alloy consisted of zirconium (70.0%), vanadium (24.6%) and iron (5.4%) by weight. The getter was analyzed under different ambient conditions of temperature, time and atmospheric pressure. Auger electron spectroscopy (AES) depth profiling was used to analyze the diffusion depth of the contaminant gases absorbed by the getter material under each condition. The data acquired from the depth profiles were fit to a simple diffusion model. This model is currently being validated, by activating the getter material under various ambient conditions, and measuring pressures and gas compositions inside packages using a residual gas analyzer (RGA). The utility of this model for optimization of getter activation and estimating package vacuum levels over time will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.