Abstract

Creep experiments were conducted on Cu-8.5at.% Al alloy in the intermediate temperature range from 673 to 873K, corresponding to 0.46-0.72 Tm where Tm is the absolute melting temperature. The present analysis reveals the presence of two distinct deformation regions (climb and viscous glide) in the plot of log ε vs. log σ. The implications of these results on the transition from powerlaw to exponential creep regime are examined. The results indicated that the rate controlling mechanism for creep is the obstacle-controlled dislocation glide. A phenomenological model is proposed which assumes that cell boundaries with sub-grains act as sources and obstacles to gliding dislocations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.