Abstract

It is well known that one always can find as many orthogonal states (i.e., states between which the transition probability is zero) as the Hilbert space has dimensions which are invariant under a given unitary transformation. The corresponding vectors are characteristic vectors of the unitary operator. In contrast, most antiunitary operators leave not more than one state invariant. However, if there are two orthogonal invariant states, a consideration of the states for which the transition probability is ½ into both invariant states surely provides a distinction. In the antiunitary case, one of these states is also invariant, another one is transformed into an orthogonal state, the rest are in between. In the unitary case, the transition probability between original state and transformed state is the same for all states for which the transition probability is ½ into two orthogonal states. This provides a ``directly observable'' distinction between unitary and antiunitary transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.