Abstract

The metabolic response time, i.e. the delay the system introduces in the response to an input flux, is considered. A novel phenomenological definition is presented, which is valid for any kind of behavior, including transitory or permanent oscillatory responses. In order to calculate the response time of single-input systems, output fluxes have to be deconvoluted with the input flux. The bases for this are established. The resulting function (unit impulse response in time-invariant linear systems) is transformed by subtracting its final state, taking the absolute value and normalizing by the resulting area, so that a norm can be applied that weights the response at every time. This response time can also be interpreted as an average. It coincides with the transition (characteristic) time of an output flux, provided that the input is performed instantaneously (step function). A strictly nonnegative response function is needed for the response time to be interpreted as a mass balance. A simple example is used to study the deviation otherwise. The method is advantageous in that it provides clues on the phenomenological behavior of biochemical systems. For example, deconvolution reveals the intrinsic oscillation-generating mechanism of an allosteric enzyme, which becomes hidden when the input flux increases in a slow way. This is illustrated by means of a model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.