Abstract

Several aspects of next-to-leading (NLO) order corrections to see-saw formulas are discussed and phenomenologically relevant situations are identified. We generalize the formalism to calculate the NLO terms developed for the type I see-saw to variants like the inverse, double or linear see-saw, i.e., to cases in which more than two mass scales are present. In the standard type I case with very heavy fermion singlets the sub-leading terms are negligible. However, effects in the percent regime are possible when sub-matrices of the complete neutral fermion mass matrix obey a moderate hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large terms leading to small neutrino masses, or inverse see-saw scenarios. We furthermore identify situations in which no NLO corrections to certain observables arise, namely for mu-tau symmetry and cases with a vanishing neutrino mass. Finally, we emphasize that the unavoidable unitarity violation in see-saw scenarios with extra fermions can be calculated with the formalism in a straightforward manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.