Abstract

For type I seesaw and in the basis where the charged lepton and heavy right-handed neutrino mass matrices are real and diagonal, four has been shown to be the maximum number of zeros allowed in the neutrino Yukawa coupling matrix Y ν . These four zero textures have been classified into two distinct categories. We investigate certain phenomenological consequences of these textures within a supersymmetric framework. This is done by using conditions implied on elements of the neutrino Majorana mass matrix for textures of each category in Y ν . These conditions turn out to be stable under radiative corrections. Including the effective mass, which appears in neutrinoless double beta decay, along with the usual neutrino masses, mixing angles and phases, it is shown analytically and through scatter plots how restricted regions in the seesaw parameter space are selected by these conditions. We also make consequential statements on the yet unobserved radiative lepton flavor violating decays such as μ → e γ . All these decay amplitudes are proportional to the moduli of entries of the neutrino Majorana mass matrix. We also show under which conditions the low energy CP violation, showing up in neutrino oscillations, is directly linked to the CP violation required for producing successful flavor dependent and flavor independent lepton asymmetries during leptogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.