Abstract

The spectroscopic character of the luminous trails generated by ultra-speed pellets has been investigated. A total of seven spectrograms have been measured and reduced. Three of these were of 5.0 km/sec aluminum pellets; two were of 5.9 km/sec magnesium pellets; one was of a 6.0 km/sec magnesium-lithium-aluminum pellet; and one was of a titanium pellet whose velocity was estimated at about 4.5 km/sec. The pronounced features of the spectrograms are: (1) AlO bands in the aluminum spectra, (2) Mg lines and MgO bands at the magnesium spectra, (3) strong Li lines and a pronounced continuum in the magnesium-lithium-aluminum spectra, and (4) TiO bands in the titanium spectra. Other features of the spectra are: (1) prominent AlI lines at λλ3944 and 3961 and a relatively weak continuum in the aluminum spectra, (2) a stronger continuum in the magnesium spectra, and (3) relatively weak MgO bands in the Mg-Li spectra. The time resolved spectra show that the AlO persists in the excited state twice as long as the aluminum. The aluminum oxidizes almost completely leaving AlO in an excited state which continues to emit light after the aluminum is burned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.