Abstract

Precise categorization of mangrove forests with medium spatial resolution satellite data is challenging and occasionally yields mixed outcomes. The available methods to estimate mangrove vegetation cover using moderately high-resolution images lack differentiation between mangrove and homestead vegetation. Mangrove vegetation displays a range of responses across the phenological cycle at different wavelengths of an optical sensor. Taking advantage of this principle, this study utilized some mangrove and non-mangrove vegetation indices (VIs) as predictor variables sourced from monthly Sentinel-2 data into the random forest algorithm to derive a phenology-based classification outcome. It also ascertained a suitable month for thresholding mangroves across different VIs. Results indicated that phenology-based classification with three classes was more accurate (95% overall accuracy) than threshold-based or WorldCover v100 classifications. MI and MVI layers from December image performed better in discerning mangroves. Findings have important implications in separating mangroves from other coastal vegetations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.