Abstract
Phenology, an important ecological attribute, deals with the development of vegetative and reproductive parts of trees called “phenophases”, which are important determinants of primary productivity and sensitive to climate change. The present study recorded various phenophases of major tree species (i.e., Quercus leucotrichophora, Rhododendron arboreum, and Myrica esculenta) as per the two-digit numerical system of Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie (BBCH) scale. A total of 72 individual trees, twenty-four from each species, distributed between 1400 and 1980 m. a.s.l elevations were tagged and measured fortnightly for two consecutive years (2019–2021) in the moist temperate forest of Western Himalaya and compared with earlier existing records. Various phenophases were correlated with climatic factors along with duration and thermal time for each phenological growth stage. We found 24 growth stages for Q. leucotrichophora and M. esculenta and 28 for R. arboreum distributed across seven principal growth stages (e.g. bud development, 0; leaf development, 1; shoot development, 3; inflorescence development, 5; flower development, 6; fruit development, 7; and fruit maturation, 8) of trees as per BBCH scale. Maximum growing degree was 748.87 and 627.95 days recorded for R. arboreum and M. esculenta during leaf development, and 796.17 days for Q. leucotrichophora during fruit development. Flower emergence was observed pre, during, and post-emergence of new leaves for R. arboreum, M. esculenta, and Q. leucotrichophora, respectively, which varied at spatial scale with previous findings. Longevity of fruit development to ripening took 17, 4, and 2 months, respectively in Q. leucotrichophora, R. arboreum and M. esculenta. Duration of leaf initiation and flowering was positively correlated with climatic variables, whereas, the reverse was observed for fruiting in the studied tree species. The study concludes that the variations in phenophases of the three species were strongly influenced by climatic variations, especially minimum temperature. The result of the present study would be important in enabling us to formulate efficient forest management strategies by understanding the short-term adaptation of the climate-sensitive important tree species in the western Himalaya.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.