Abstract
With increasing concern about the ecological consequences of global climate change, there has been renewed interest in understanding the processes that determine species range limits. We tested a long-hypothesized trade-off between freezing tolerance and growth rate that is often used to explain species range limits. We grew 24 willow and poplar species (family Salicaceae) collected from across North America in a greenhouse common garden under two climate treatments. Maximum entropy models were used to describe species distributions and to estimate species-specific climate parameters. A range of traits related to freezing tolerance, including senescence, budburst, and susceptibility to different temperature minima during and after acclimation were measured. As predicted, species from colder climates exhibited higher freezing tolerance and slower growth rates than species from warmer climates under certain environmental conditions. However, the average relative growth rate (millimeters per meter per day) of northern species markedly increased when a subset of species was grown under a long summer day length (20.5 h), indicating that genetically based day-length cues are required for growth regulation in these species. We conclude that the observed relationship between freezing tolerance and growth rate is not driven by differences in species' intrinsic growth capacity but by differences in the environmental cues that trigger growth. We propose that the coordinated evolution of freezing tolerance and growth phenology could be important in circumscribing willow and poplar range limits and may have important implications for species' current and future distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.