Abstract

The thermal and pyrolysis characteristics of four different types of addition-cure phenolic resins were compared as a function of their structure. Whereas the propargyl ether resins and phenyl azo functional phenolics underwent easy curing, the phenyl ethynyl- and maleimide-functional ones required higher thermal activation to achieve cure. All addition-cure phenolics exhibited improved thermal stability and char-yielding property in comparison to conventional phenolic resole resin. The maleimide-functional resins exhibited lowest thermal stability and those crosslinked via ethynyl phenyl azo groups were the most thermally stable systems. Propargylated novolac and phenyl ethynyl functional phenolics showed intermediate thermal stability. The maximum char yield was also given by ethynyl phenyl azo system. Non-isothermal kinetic analysis of the degradation reaction implied that all the polymers undergo degradation in at least two steps, except in the case of ethynyl phenyl azo resin, which showed an apparent single step degradation. The very low pre-exponential factor common to all polymers implied the significance of volatilisation process in the kinetics of degradation. Isothermal pyrolysis studies led to the conclusion that in the case of nitrogen-containing polymer, the pyrolysis occurs via loss of nitrogenous products, which is conducive for enhancing the carbon-content of the resultant char. FTIR spectra of the pyrolysed samples confirmed the presence of C–O groups in the char. XRD analysis of the partially carbonised polymers did not give any indication of crystallites except in the case of ethynyl phenyl azo system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.